
Kai Wanke
Sofia Vale

Work Less – Do More
An Automated Approach to Define-XML Validation

As Define-XML contains many repetitive items, manual validation is not only a
tedious and time-consuming task, but also prone to errors. However, this
repetitive structure allows for many of its contents to be validated automatically.

It is our recommendation to aim at automating the validation on top of the
development for a number of reasons, including: 1) Define-XML should ideally
be created before the SDTM or ADaM data is available; 2) manual enrichments
may have been made which (inadvertently or not) affect the metadata; and 3)
the data may be updated but a new Define-XML cannot be automatically
generated as it would undo manual enrichments.

This whitepaper will describe how a significant part of the validation of Define-
XML can be automated using SAS scripts, independent of the software or
method used to generate the Define-XML, to reduce the workload of the
programmer while guaranteeing a high degree of accuracy.

INTRODUCTION

Define-XML is a form of metadata that describes the
content of tabular dataset structures (typically SDTM
or ADaM when used according to CDISC standards).
In short, it provides the reviewer of a clinical study
with valuable information regarding the number and
content of datasets submitted, the characteristics
and origin of all variables used in these datasets (up
to the value-level for selected variables) and
dictionaries and codelists used in the study. Its
purpose is to help the reviewer track the data used in
the generation of the datasets, understand the
information they contain and, in this way, minimize the
time they need to familiarize themselves with the
content of a study.

The Define-XML is part of the submission package of
clinical studies that is required by certain regulatory
bodies such as the United States Food and Drug
Administration (FDA) and the Japanese
Pharmaceuticals and Medical Devices Agency
(PMDA). Because of this, it is essential that the
metadata presented in it is complete, accurate and
validated.

CHALLENGES OF DEFINE-XML

Several characteristics of clinical studies can make
the creation of Define-XMLs challenging: clinical
studies usually contain a large number of datasets
and variables, which need to be described to a high
level of detail, covering associated type, length,
format (i.e. ISO 8601 for date/time variables),
codelist, origin and other aspects; also, some
parameters, like origin, may be difficult to define in a
consistent way when done by hand. this makes the
description of a single variable a very time-
consuming task. Finally, everyday work will probably
require more than one programmer to work on the
creation and / or validation of a Define-XML, making it
hard to maintain consistency among the involved
personnel. These reasons make the work often
tedious and time-consuming, creating the need to
streamline and optimize this process.

PROPOSED SOLUTION: AUTOMATE
DEFINE-XML

Fortunately, the repetitive and predictable structure of
Define-XML makes it an ideal target for
automatization. Indeed, some tools like Pinnacle21®
(P21) are available to support the generation and
validation of Define-XML files. The free version, P21
Community, uses SDTM or ADaM datasets to create
an excel template for the Define-XML which can then
be modified by the user and uploaded back into the
software to create an xml file based on specifications
in the template. This tool already greatly improves the
work with Define-XML, but it is unable to create a
complete Define-XML template, that needs to be
finished by the programmer. The filled-in template is
then validated before the final Define-XML is created.

REASONS TO AUTOMATE VALIDATION

We chose to highlight the automatic validation of
Define-XML for several reasons: First, a Define-XML
may be created very early during the study or the
process of data conversion and experience shows
that clinical data and/or its presentation in SDTM /
ADaM datasets can change even after the Define-
XML has been prepared. Manual changes are here
often more efficient than to recreate the entire Define-
XML.

Moreover, there are cases where the data present in
the study datasets is inconsistent, causing
unexpected results during the automatic generation
of the Define-XML. The programmer may overlook
these situations, leading to errors in the metadata.
Lastly, certain parameters, such as methods or
comments, may be study-specific and therefore not
predictable by an automated Define-XML creation
program, so manual input cannot be fully avoided.

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

2

VALIDATION MACROS

The Define-XML validation macros presented in part
in this paper are designed to address these cases
and to guide the validation of the Define-XML. The
macros identify potential inconsistencies in the
metadata and summarize them in an excel file that is
easily understandable by the validator. The validation
macros can be used during any stage of the data
conversion and make it possible to specifically
change small parts of the Define-XML without
recreating it as a whole. The application of automated
Define-XML creation and validation programs is an
ideal way to reduce the amount of time and effort
spent in the creation of clinical metadata and at the
same time guarantee the highest degree of
completion and consistency.

GENERAL WORKFLOW

The macro to validate the Define-XML is split into a
group of sub-macros that work in a modular way.

There is a set of macros dedicated to define the input
parameters (i.e. name and location of the Define-XML
Template, location of a .xfdf file containing CRF
annotation and page numbers and name and
location of the to-be-produced output) and to import
the necessary files into SAS-datasets. The macro
Set_Global_Parameters uses a user-generated
excel file that provides all the necessary information.
It also controls the activity of an optional debugger
which determines whether temporary datasets are
being deleted or kept for further inspection by the
user. The parameters defined by this macro are then
used as input parameters for the Read_xml_excel

and Read_sdtm macros which import the specified
input

files into SAS®. These SAS-datasets are then further
used by a set of different macros that validate
different aspects of the Define-XML template by
comparing it to the actual data in the SDTM datasets.
Each macro creates a temporary report dataset
which will later be used by the Output_check macro
that combines them into one final report that is then
exported as an excel file.

The test macros act in a modular way and are
independent from each other, meaning that they can
be easily modified or that new checks can be
introduced by the user if a specific trail requires this.
This approach makes the validation macro highly
adaptive and easy to maintain when new versions of
SDTM or Define-XML are released.

The 'heart' of the Define-XML macro is represented
by a set of macros that compare the characteristics
of datasets, variables, values and codelists
described in the Define-XML template with the actual
data presented in the SDTM datasets. The macros
check if the metadata in the Define-XML Template is
complete and consistent with the data in the original
datasets.

Possible findings are then linked back to their
location in the Define-XML template and summarized
in a temporary SAS-dataset. This section highlights a
number of key-checks to demonstrate the use of the
individual macros in the context of the complete
validation macro.

EXAMPLE: CHECK VARIABLE TYPE

The macro validate_vartypelen checks the type and
length of a variable presented in the metadata with its
counterpart in the SDTM dataset. This section
focuses on its method to validate the type of a
variable. In our studies, we use the four main types
as presented in Define-XML: 'text', 'integer', 'float'
'and datetime types.

First, the macro creates a SAS-dataset containing
every variable used in a study (i.e. all SDTMs domain
are being examined at once). The macro makes use
of PROC SQL dictionary tables to identify the
variables needed, divides them into character and
numeric variables and finally combines them all into
one dataset.

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

3

CODE:

proc sql noprint;
 create table work.temp_sdtm01 as
 select memname as dataset
 from dictionary.tables
 where lowcase(libname) = "sdtm";
quit;

/* Put all SDTM datasets with numeric variables in a
 macro variable to be used in the next data step.*/

proc sql noprint;
 select distinct quote(trim(memname))
 into :numvar_datasets separated by ","
 from dictionary.columns
 where lowcase(libname) = "sdtm"
 and type = "num";
quit;

/* Get all values for each variable in each dataset
 (character or numeric) and then combine all datasets
 created in one. Numeric values will be transformed
 into characters to allow the combination of character
 and numeric values in one common variable. */

data _null_;
 set work.temp_sdtm01;

 call execute(cat(
 "data work.temp_char_", strip(dataset), ";
 set sdtm.", strip(dataset),";
 array _char{*} _character_; length _dataset _variable _value _var_type $ 200;
 retain _var_type 'char';
 _dataset = '", strip(dataset), "'; ", "do i=1 to dim(_char);
 _variable=vname(_char{i});
 _value = _char{i}; output; end; ",
 "keep _dataset _variable _value _var_type;
 run;",

 "proc sort data = work.temp_char_", strip(dataset), " nodupkey;
 by _dataset _variable _value;
 run;"));

 if strip(dataset) in (&numvar_datasets) then
 call execute(cat(
 "data work.temp_num_", strip(dataset), ";
 set sdtm.", strip(dataset),";
 array _num{*} _numeric_;
 length _dataset _variable _value _var_type $ 200;
 retain _var_type 'num';
 _dataset = '", strip(dataset), "'; ",

 "do i=1 to dim(_num); variable=vname(_num{i});
 _value = strip(put(_num{i},best.));
 output;
 end; ",

 "keep _dataset _variable _var_type _value;
 run;",
 "proc sort data = work.temp_num_", strip(dataset), " nodupkey;
 by _dataset _variable _value;
 run;"));
run;

data work.temp_all01;
 set work.temp_char_:
 work.temp_num_:;
run;

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

4

The following data steps assign the SDTM type of
each variable. Some derivations presented here are
based on our study-defined conventions and may be
subject to change in other circumstances.

CODE:

data work.temp_type01;
 set work.temp_all01;

 if missing(_value) then _type = 0;
 else if _var_type = "char" then _type = 4;
 else if find(_value,".") and length(strip(_value)) > 1 then _type = 2;
 else _type = 1;

 if _type = 4 then do;
 if substr(variable,length(variable)-2,3)= 'DTC' then do;
 temp_value = translate(_value,"xxxxxxxxxx","0123456789");
 if find(temp_value,"xxxx-xx-xxTxx:xx") then _type = 3.9;
 else if find(temp_value,"xxTxx") then _type = 3.8;
 else if find(temp_value,"xxxx-xx-xx") then _type = 3.7;
 else if find(temp_value,"xxxx") or find(temp_value,"--xx")
 then _type = 3.6;
 else if find(temp_value,"Txx:xx") then _type = 3.5;
 else if find(temp_value,"Txx") then _type = 3.4;
 end;
 else if length(_value) > 2 and findc(strip(_value),"PTYMWDHS","div") = 0
 and find(_value,"P") = 1 and anyalpha(substr(_value,length(_value)))
 then _type = 3.3;
 end;
 drop temp_value;
run;

proc sort data = work.temp_type01;
 by _dataset _variable _type;
run;

data work.temp_type02;
 set work.temp_type01;
 by _dataset _variable _type;
 if last._variable then output;
run;

data work.temp_type03;
 set work.temp_type02;
 length type_c $ 200;
 select(_type);
 when(0) type_c = "missing";
 when(1) type_c = "integer";
 when(2) type_c = "float";
 when(3.3) type_c = "durationDatetime";
 when(3.4) type_c = "partialTime";
 when(3.5) type_c = "Time";
 when(3.6) type_c = "partialDate";
 when(3.7) type_c = "date";
 when(3.8) type_c = "partialDatetime";
 when(3.9) type_c = "datetime";
 when(4) type_c = "text";

 otherwise put "WAR" "NING: Unknown type found.";
 end;
run;

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

5

template with the value-level metadata to determine
the different groups of values that should be present
in the variables. It then uses this information to break
down the data into different SAS-datasets that are
then combined and compared to the value-level
metadata in the Define-XML template. These checks
are done using the same logic as the ones used for
variable-level, so only the code for the initial
breakdown will be presented here.

Next, the macro creates a new dataset containing the
variable and type information generated here with the
metadata presented in the Define-XML Template. It
then compares the two to find inconsistencies, which
are then used to generate warnings in the report
dataset.

EXAMPLE: CHECK TYPES OF VALUE-LEVEL
METADATA

Our Define-XML validation macro also considers
value-level metadata. Generally, we create this type
of metadata for variables with more than one origin
(e.g. LBORRES which usually uses CRFs and
electronic Data Transfers - eDTs), different codelists
(e.g. TSPARM) or different types of data (e.g.
–TRESC variables that contain text or numeric data).
The creation and validation of value-level metadata is
often time consuming and challenging, since every
possible value has to be taken into account. Thus,
the Define-XML validation macro combines the
information in the Where-Clause tab of the excel

CODE:

proc sql;
 create table work.temp_comp_vartype (drop = order) as
 select a.order
 ,a.dataset
 ,a.variable
 ,a.data_type as xml_type
 ,b.type_c as act_type
 from work.xml_variables(where = (^missing(variable))) as a
 left join work.temp_type03 as b
 on a.dataset = b._dataset
 and a.variable = b._variable
 order by dataset, order;
run;

data work.check_vartype;
 set work.temp_comp_vartype;
 length type id result compare $ 200;

 type = "Variable type";
 id = cat("VAR_TYPE_",strip(put(_n_,z3.)));

 if act_type = "missing" then
 compare = cat("No values found for variable ", strip(variable),
 " on dataset ", strip(dataset),
 ". Variable type has to be checked manually.");
 else if xml_type ^= act_type then
 compare = cat("The variable ", strip(variable), " on dataset ",
 strip(dataset), " is defined as ", strip(xml_type),
 " when the expected type is ", strip(act_type), ".");
 if missing(compare) then result = "Right";
 else if find(compare, "manually") then
 result = "Check (" || strip(id) || ")";
 else result = "Wrong (" || strip(id) || ")";
run;

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

6

 CODE:

/*Get the where-clauses to subset the datasets
 with value-level metadata.*/
data work.temp_where01;
 set work.xml_whereclauses;
 length clause1 $ 200;
 if comparator in ("EQ", "NE") then
 clause1 = strip(variable) || " " || strip(comparator) || " '" ||
 strip(value) || "'";
 else if comparator in ("IN", "NOTIN") then do;
 value = tranwrd(value,", ", "', '");
 clause1 = strip(variable) || " " || strip(comparator) || " ('" ||
 strip(value) || "')";
 end;
run;

proc sort data = work.temp_where01;
 by id variable;
run;

data work.temp_where02;
 set work.temp_where01;
 by id variable;
 length clause $ 200;
 retain clause;
 if first.id then clause = clause1;
 else clause = strip(clause) || " AND " || strip(clause1);
 if last.id then output;
run;

proc sql;
 create table work.temp_val01 as
 select a.order
 ,a.dataset
 ,a.variable
 ,a.data_type
 ,a.length
 ,a.where_clause
 ,b.clause
 from work.xml_valuelevel as a
 left join work.temp_where02 as b
 on a.where_clause = b.id;
quit;

/*Obtain a dataset with all values with value-level metadata.*/
data _null_;
 set work.temp_val01;
 if missing(clause) then
 put "WAR" "NING: Missing where-clause for variable " variable
 " on dataset " dataset ", order number " order ".";
 else do;
 call execute(cat(
 "data work.temp_vlm_", strip(dataset), strip(order), ";
 set sdtm.", strip(dataset), ";
 length dataset variable where_clause value $ 200; ",
 "dataset = '", strip(dataset), "';
 variable = '", strip(variable), "';
 where_clause = '", strip(where_clause), "';
 value = ", strip(variable), ";
 where ", strip(clause), ";
 keep dataset variable where_clause value; run;"));

 call execute(cat(
 "proc sql;
 create table work.temp_vlm_d_",strip(dataset),strip(order)," as
 select distinct *
 from work.temp_vlm_",strip(dataset),strip(order),";
 quit;"));
 end;
run;

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

7

GENERATE OUTPUT

Each different macro creates a SAS-dataset with its
findings that can be related to one of the levels of the
Define-XML. The macro output_check combines the
datasets containing information regarding one of its
levels in a single dataset. See below an example for
the dataset describing variable-level information.
Note that the dataset “check_varlen” has not been
created in the previous examples and is displayed
here only to demonstrate how different outputs are
being combined during the generation of the output
file.

Eventually, the same macro exports the datasets in a
single excel file containing a tab per findings related
to each level of the Define-XML metadata. The macro
makes use of the ODS System to create the output.
The macro also controls the colour of cells in the final
excel sheet in order to highlight its findings for the
user. Below you can see how the variable-level
information about type is exported into the output
excel sheet.

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

CODE:

/*Combine all variable checks*/
proc sql;
 create table work.table_variables as
 select c.order as order
 ,a.dataset
 ,a.variable
 ,a.result as type
 ,b.result as length
 from work.check_vartype as a
 left join work.check_varlen as b
 on a._dataset = b._dataset
 and a._variable = b._variable
 left join work.xml_variables as c
 on a.dataset = c.dataset
 and a.variable = c.variable
 order by dataset, c.order;
quit;

CODE:

%let wrong_color = lightpink;
%let check_color = gold;

proc report data = work.table_variables;
 columns dataset variable type;
 define dataset / display "Dataset";
 define variable / display "Variable";
 define type / display "Type";

 compute type;
 if find(type,"Check") then do;
 call define(_col_, "style", "style=[background=&check_color]");
 end;
 else if find(type,"Wrong") then do;
 call define(_col_, "style", "style=[background=&wrong_color]");
 end;
 endcomp
run;

8

CONCLUSION

This paper presents one approach to automate the
validation of Define-XML metadata. The validation is
based on an excel-template, which is then used to
create a Define-XML using P21. The validation
macros compare the metadata described in the
template with the SDTM datasets of its associated
study to find missing or inconsistent information. The
identified issues are then summarized in an excel file
that can easily be used by the programmer to find
and solve potential issues in the template.

The code presented in this paper demonstrates the
general workflow of our strategy to automate Define-
XML validation and provide a starting point for
programmers to add their own checks, which is
made easy by the modular framework in which our
macros operate.

The here presented macros represent only a small
fraction of the checks used in the full program, which
is able to examine dataset -, variable - and value –
level information, as well as the codelists and
dictionaries used in the study. Specifically, it
evaluates information regarding variable / value type,
length, format, codelist, origin and more.

Taken together, the automated validation of Define-
XML has proven to be an efficient way to optimize the
generation of metadata in clinical studies.
Implementing this strategy has great potential to
greatly increase speed and accuracy of Define-XML
production by simultaneously reducing the workload
of the programmers involved.

ACKNOWLEDGMENTS

The authors would like to thank our colleagues at
OCS Life Sciences, especially Jules van der Zalm
and Lieke Gijsbers, for their valuable input and
support during the preparation of this paper.

RECOMMENDED READING

Generating Define.xml from Pinnacle 21 Community -
Pinky Anandani Dutta, Inclin, Inc

CONTACT INFORMATION

Your comments and questions are valued and
encouraged. Contact the author at:

Kai Wanke

OCS Life Sciences

Address: Ruwekampweg 2G

City / Postcode: 's-Hertogenbosch / 5222 AT

Work Phone: +31 (0)73 523 6000

Email: sasquestions@ocs-consulting.com

Web: https://www.linkedin.com/in/kaiwanke/

Brand and product names are trademarks of their
respective companies.

WORK LESS – DO MORE: AN AUTOMATED APPROACH TO DEFINE-XML VALIDATION

9

